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In this article, the exp-function method is used to construct some new exact solitary wave solutions of
the sixth-order Boussinesq equation and the regularized long wave equations. These equations play
very important role in mathematical physics, engineering sciences and applied mathematics. The exp-
function method is a powerful and straightforward mathematical tool for solving nonlinear evolution

equations.
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INTRODUCTION

In the study of nonlinear physical phenomena, searching
exact traveling wave solutions play an important role. The
occurrence of wave phenomena is seen in elastic media,
fluid dynamics, optical fibers, plasma (Abdou et al.,
2007), etc. In the present time, many new efficient and
powerful methods have been suggested by different
scientists to find the exact traveling wave solutions of
nonlinear evolution equations (NLEEs), such as, the
Hirota’s bilinear method (Hirota, 1971), the Backlund
transformation method (Rogers and Shadwick, 1982), the
inverse scattering method (Ablowitz and Clarkson, 1991),
the tanh —function method (Malfliet, 1992), the homotopy
analysis method (Liao, 1992; Mohyud-Din et al., 2011;
Ezzati and Aghamohamadi, 2011), the Jacobi elliptic
function expansion method (Liu et al., 2001), the F-
expansion method (Zhou et al., 2003; Zhang et al., 2005),
the variational iteration method (He, 1997; Yousefi et al.,

2009; Jafari et al., 2011), (G’/ G )~ expansion method

(Neirameh et al., 2010) and so on.

Recently, He and Wu (2006) presented a method,
called the exp-function method to seek solitary wave
solutions, periodic solutions and compacton-like solutions
of nonlinear evolution equations. After introducing the
method, it caught instantaneous attention and it has been
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widely used for searching exact traveling wave solutions
for the different partial differential equations. For
example, He and Abdou (2007) investigated the method
for searching new periodic solutions of the nonlinear
wave equations; Wu and He (2007) used the method for
finding solitary solutions and periodic solutions; Zhang
(2010, 2008) studied the method for constructing explicit
and exact solutions of a lattice equation, whilst he (2010)
implemented the method to get exact solutions for Riccati
equation with arbitrary function in the another article;
Bekir and Aksoy (2010) concerned the method for NLEEs
with variable coefficients; Yildiim and Pinar (2010)
applied the method for reaction-diffusion equations;
Asgari et al. (2011) implemented the method for
infiltration equation; Naher et al. (2011) investigated the
higher dimensional nonlinear partial differential equation
by the method; Misirli and Gurefe (2011) studied the
method for solving NLEEs and so on. The study of the
exp-function method indicates that it is a very effective
and trustworthy method.

In this article, we use the exp-function method to obtain
new solitary wave solutions for the sixth-order
Boussinesq equation and the regularized long wave
equations.

Description of the exp-function method

Suppose the general nonlinear partial differential
equation in two independent variables x and ¢, is:



P(u,u,u ,u, u,u_,..)=0, (1)

1> xt?

where u =u(x,t)is an unknown function and Pis a

polynomial in u =u(x,t) which has various partial

derivatives, and the highest order derivatives and
nonlinear terms are involved in it. The important steps of
the exp-function method are discussed in the following:

Consider the traveling wave transformation:

u(x1)=u(g),

where s is the wave speed and ¢ is the combination of

two independent variables x and ¢. Using Equation (2),
Equation (1) transforms to an ordinary differential
equation:

&= x+st, )

2
Q(u,su',u',s u",su",u",...)zO, (3)

where primes denote the ordinary derivative with respect
tol.

We assume that the wave solution of Equation (3) can
be expressed in the form (He and Wu, 2006):

Za exp(né)
g ==
Zb exp(mé

m=—p

_a_exp(—c€)+...+a, exp(df)
b_p exp(—p&)+...+b, exp(g&) ’

(4)

where c,d, pand g are positive integers that could be

determine subsequently, a, and b, are unknown
constants , Equation (4) can be re-written in the form:

u(8)= a,exp(c)+...+a_ exp(—d&)

: ()
b,exp(pé)+..+b_, exp(—g&)
In order to determine the values of cand p, we balance

the highest order linear term with the highest order
nonlinear term in Equation (3).

Similarly, to determine the values of d and ¢,we

balance the lowest order linear term with the lowest order
nonlinear term in Equation (3).

Putting the values of ¢,d, p and ginto Equation (5)

and then substituting Equation (5) into Equation (3) and
simplifying, we obtain;
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kE)=0, k=0,1.2,3,.. (6)

D C exp(*
k

Then setting each coefficient C, =0, yields a set of

algebraic equations for a,’s andb, 's. The unknown a,’s

andbp 's can be obtained by solving the algebraic

equations. Substituting these values into Equation (5), we
obtain traveling wave solutions of the Equation (1).

APPLICATIONS

Here, we apply the exp-function method for obtaining
some new exact solitary wave solutions of two important
NLEEs, namely, the sixth-order Boussinesq equation and
the regularized long wave equations. The explanation
between obtained solutions and solutions obtained in
literature is discussed. Moreover, the solutions are shown
in some graphs with the aid of algebraic software Maple
13.

Solutions of the sixth-order Boussinesq equation

Consider the sixth-order Boussinesq equation (Aslan and
Ozis, 2009):

=0~ 1500, 430, +15(a, ) 4500, 490 | =0,
7

~

Now, we seek traveling wave solutions of Equation (7).
We use Equation (2) into Equation (7), which yields:

u(6)) =0.
(8)

where primes denote the derivative with respect to &.

According to He and Wu (2006), the solution of Equation
(8) can be expressed in the form of Equation (5).
To determine the values of cand p, we balance the

(6)

su"—u'"— (15uu +30u'u "'+15(u")2+45u2u"+90u(u')2+

highest order linear term of u
(4)

with the highest order

nonlinear term of uwu ’in Equation (8). Therefore, we

have

u(ﬁ):clexp[(6p+c)§}+... (9)
c,exp[7p&]+...

and

@_5 exp[ (5p+2c)&]+...
Cy exp[7l9§]+...

(10)



6708 Int. J. Phys. Sci.

where ¢, are coefficients for simplicity. By balancing the
highest order of the exp-function in Equations (9) and
(10), we obtain 6p+c=5p+2c, which in turn gives
p=c.

Again, to determine the values of d and ¢g,we

balance the lowest order linear term of u(6) with the

. 4
lowest order nonlinear term of uu( )

Therefore, we have

in Equation (8).

0 _td exp|[—(d +64)&]

u
..+d, exp[-7¢&]

; (11)

and

(4)2...+d3exp[—(2d +5¢)¢ ] (12)
vt d,exp[-7¢¢] ’

uu

where dj are determined coefficients only for simplicity.

By balancing the lowest order of the exp-function in
Equations (11) and (12), we obtain

—(d+6q)=—(2d +5q), whichin turn gives g =d.

A
+C_ e+ C_ e *)=0,

1
—(Cee + Cye’ + Cue* + Cye’ + Che + Cef

Here, we can freely choose the values of cand d, but
the final solution does not depend upon the choice of the
values of cand d.

Case 1

Choose p=c=1and g=d=1.
For this case, the trial solution Equation (5) reduces to

¢ -¢
ae’ +a,+a_e
u = . (13)
(€) be® +b,+b_e*
In case b, # 0, Equation (13) can be simplified as:
u(g)= G tata e’ (14)

et +by+b_ e

Now substituting Equation (14) into Equation (8) and
simplifying, we have

Co+C_e* +C e +C_je +C_,e ' (15)

_ 7 we obtain a set of algebraic equations for
where A = (e‘f + b, +b_,e 5) . g a
a_,, a,, a,, b ,,b, and s.
Setting each coefficient of exp(i ncf), n=0,1,2,3,...,
C =—2a0—s2a1b0+52a +2a1b0—45a0a12+45a13b0+15a12b0—15a1a0=0,

6 0

C, =3s’a,b, + 255a,a,b, — 60a; —54a,b; — 68a_, + S4a,b, —4s’a,b_,—3s’a,b; —45a'b; —180a,a;
+225ala,b,+ 68ab_, +4s’a_, +180a’b_,—180a’a , +240alb_ ,—240a,a_ , - 195a’b; = 0,

C, =262a_b, +724a,b_, —986a,b,b_, —135a; +900aab_, —1320a’bb_, + 210a,bya_, +1785a,b_,a,
—45a’byb_, —2s*a,b_, +19s’a_b, —360a,a,b; —2s°a,b, +2s’a,b; + 405a’a,b; — 45a,a.b,
—45a’bya_, —810a,a_ja, —17s*a,b,b_, +304a,b, +255a,;b, — 675a,a_, +105a’b, —304a,b,;

—-225a'b; =0,

C,=-960a’, +900a,b_ja; —720a_,a; —720a,a’, +30a,b;ja_, + 4080a,b_a_, —990ab;b_, — 405a_,a,b,
-2666a,b,b_, +3040a,b;b_, + 75a;bb_, —12s’ab’, +12s’a_b_, +37s’a_b; —360a,a,b; + 2s’a,b,
—2s%a,b; +405a,a;b; —45aa,b; +405a’bja_, +900a’b_a_, —17s*a,b,b_, +1755aa,b,b_,
-1350a,a,a_,b, —1680a,a,b,b_, —20s’a,b;b_, —304a,by —3120a/b>, +1980a,b_, +105a,b,
+255a’by +304a,b; —135a.by —225a,b, —1804a,b>, —3636a,b>, + 3636a_,b_, —374a_b; =0,
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C,=-10526a,b>, —45a;b; —1665a,a_b, —1125a,a’, —206a_,b,b_, —1665a’b,b>, —765abb_,
-7710a,b*a, +810ala,b? + 6525a_ja,b_, — 60a,a_b} —330a,bia_, +2360a,b’b_,+10732a,b,b?,
—2344a,b)b_, +1380aib,b_, +1830a’bib_, — 690ab’ b, —17s%a,b>, +38s’a_,b; + 255a,b;a,

+ 3s2a]b05 — 3s2a0b5‘ —lSOalzaOb(f + 22511]a§b03 + 225a]2b03a71 — 1665a]a31b0 +1080a,a,a_,b_,
- 2820a,b_bja, +3720a,bya_b_, +2565a,a;b,b_, + 2565a’a_byb_, —270aa,b_b; —270a,a,a_,b;
- 40s%aybib_, - 26s’a,byb’ +2s*a,bjb_, + 43s’a_b,b_, + 54a,b] —1845a> b, — 60a’b; —195a’b;
- 54a,b) —16a_,b} +180a)b_, =0,
C,=4590a,a,b_ja_b,—540a’ —10290a,b? a,b, +10440a_b,a,b_, —390a_brab_, +1740a,b_,ab;
+1350ab_ja_b; +1350a,b_,a;b; —1485a,a;b’ b, —1125a,a}bib_, + 270a,a,bia_, — 665 a,b,b’,
— 38s2a0b03b4 + 16s2a]b5‘b71 + 6s2a]b02bfl + 60s2a71b02b71 — 2a]b(§’ — 1695af]b02 + 451131)03 + 21101)05 + lSaébé
+19336a,b>, —19336a_,b°, — 44a_,b; + 4080a’,b_, +1680a/b>, —900ab>, —3360a b’, + 5295a b b’
+ 90a71b5‘a] — 420a71b§a0 — 10051131)711)02 — 405a]2b(;‘b71 — szaobo5 — 451102a]b(;‘ —lSaOanO5 — 3015a0a31b0
-1665ab*b; —1215a,a’,b; —1215a_,ab; —5760a,b’a_,+5172a,b,b> —344a,b’b_, +388a,bib_,
- 7572a,blb?, +2400a_,b’b_, —8s%a,b> +8s’a_b> +22s*a_b} +1620a,alb? + 165ab,b_,
—~180a,a’b_ ,—180aja_b_,+1620a’a_b>, —45ala_ by + s*a,by = 0,
1155a’,b} —7350alb? b, —1155alb}b> + 4200a_,bia,b_, +1260a_blab_, + 4200a,b’a,b;

Co = —
- 2835a,a.b’b; —2835a,a’,b; +3780a,a,b_,a_,by +945a,a’,b,b_, +945a,a;b> b, —315a,a;b_b;
+3780a,a,a_,b>, —105a,b_,bja, —12180a,bya_,b°, +945ala_b,b>, —315a’a_,b;b_, —84s’a,b b’
—l4s’a,b by +Ts*ab)b_, +42s°abib’ +14s*ab,b’ +14sa_bb>, +42s%a_b)b_, —2310a_ja,b’
-2310a,b>,a, —105a_,bja, — 2352a,bob>, + 28a,b_by —14a,bb_, +1176a,b)b> —11788a,b,b’,
-11788a_,b,b* +1176a_b}b_, +8400a’b,b , +8400a’b’ b, +210alb b} —28s’a,b’, +23576a,b’,
—1l4a_b) +7s%a_b) +630ab> —1575a° b, + 945ala_b,b_, + 630a bib , —1260a,a’b_, —315ala_b;
-1575ab’ b, —1260ala,b’, —315a,a’b; = 0,

C_ = —19336albf1 + 8x2albf1 - 8x2a71bfl + 765a3bf1b0 + 1620a§a71bf1 + 1620alaflbf1 - 180a12a71b731

—180a,a;b>, — 45a,a’ b} + s*a_bd +4590a,a,b’a_b, + 270a,a,b_a_,b; +5295a>bjb_,
—1695a’blb>, —1005a;b>\b; + 2a,b_b) +45a)b_ by —45aja by —15a,a_,b) +15a;b_b;
—1125a,a’,b; =5760a,b>a_, +5172a,b,b>, —344a,b> b; — 44absb’ +2400a,b;b’, +388a_,bjb_,
—17572a_,blb* — s*a,b_b; —420a,b>bla, +90a_bjab_, +10440a,b’ asb, —10290a_,b,a,b’,
-390a_,bla,b’ +1740a_bla,b_, —1485a,a’,byb_, —1215a,b> alb; +1350a_,alb by —1215a_,a}b’\b;
+1350a’a,b_b; —3015a,alb’ b, — 665 a,byb’, —38s>a,b>\b) +22s%a,b/b> + 60s’ablb> +16s’a_bjb_,
+6s’a_blb?, —3360a}b’ —2a_bS —405a’ b, —1665a>b; +19336a_,b°, + 4080a]b* +1680a’ b’
-540a'b*, -900a’b_, =0,
C_, =180a,b>, - 270a,a,a_b b* —10526a,b", —1710a_,a,b’, + 6525a,b*,a, — 690a’ b’ b, + 2360a,b’ b;
—16a,b)b>, —206a,b,b*, — 2344a_b)b> +10732a_,b,b’, +1830a’ b b_, +1380a;b’ b, —1845a}b" b,
— 17x2a0bf1 + 54a71b§b71 — 54a0bflb51 — 45a3bflb02 — ISOaOaEIbS1 — 1665aflb0b71 — 195a§bflb3
—270a4a’blb_, +2565a;a_ b’ b, +225aia_b)b_, — 40s’a b’ b; +38s’a,bib’ + 43s’a,byb?,
+2sa_bb?, —26s%a_byb’, —330a_bib*a, —2820a_,bib*a,+3s’a_b b , —3s’a,b’ by +255a,b_bja_,
+255a,a’bjb_, +2565a,a’,b,b>, —1665a,a;b’ b, +1080a,a,a_,b>, +3720a,bya_b>, —1665ala_,b,b’,
- 60a,blayh’, +810a,a’ b’ —60a’b; —765a’ by —1125a,ab’, =0,
C_,=900a_,a}b’ +3040a_,b}b’ +4080a,b*a_, —2666a,b* b, —374a,blb’* +75a%b;b* +125%a,b’,
—12s%a_b*, —304a_bb> +255abjb_, +304a,b’>b; —225a.b> b, —720a_,a’b’*, +900a’,a,b’,
+105a;b>,b; —990a’,bib_, +30a,bia_b>, —405a,b,a,b*, —1680a_,b,b’ a, —17s*a,b* b, +37s*a,blb’,
—20s%a_bib’ +2s%a_bgb®, —2s*a,b’ b} —360a_bb*a, + 405a,a’blb* +1755a,a’ b,b’,
—45a4a’bgb_, +405aa_b> bl —960a;b> —3120a’ b’ +1980a,b”, —135a b, —180a’b? +3636a,b’,

-3636a_,b* —720a,b*al —1350a,a_,a,b’ b, =0,
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C ,=-135a,b* +210ab*a b, +19s*a,b,b’, —17s’a_byb*, - 2s*a_b;b’, + 2s’a,b* by —360a_bjb> a,
—45a,a’bb’ —810a,a_ja,b*, +405a,a’b;b> —45a;a b’ b, +724a,b’, +1785a_,a,b*, - 675a,b’ a,
—1320a’b,b’, +262a,b,b’°, —986a_byb", —2s*a,b’, +304a_bjb’ +255a;b* b, —304a,b* b;
—-225a’bjb_,+900a’a,b’, +105a’bob> —45a° b,b> =0,

C_,=-180a’ab’ +68a b’ —240a_ja,b’, + 4s’a,b’ —S54a_b;b* —68a,b’ —45a’ b;b’> —3s’a_b;b*,
—4s’a b’ —195a’b;b’ +180a’ b’ +3s*a,b’ b, + 54a,b’ b, + 240a’b* +255a_b,b*a, —60a,b’,

+225a,a’byb’, —180aia_b* =0,

C . =2a b b’ —2a,b® —s*a bbb’ +15a>b b’ —15a_,a b’ + s’a b’ +454>b b —45a*a b’ =0.
6 170 1 0 1 170 1 170 1 1770 1 0 1 170 1 1770 1

Solving the system of the aforementioned algebraic
equations with the aid of Maple 13, we obtain

-1, 5 -1 1.,
by=by, a,=—b, a=2-b, a=—, b,=—b,
12 3 3 4

s :i\/z, (1 6)

where b, is arbitrary constant.

1 1
a4=d, h=h, q=h(a+). a,= alf, b= s=t/4q+1%+2,

(17)
where a, and b, are arbitrary constants.
-1 1 -2 1
b =h, a_lngg, 4=3h a== b_lzzbg, s=+2y3, (18)

where b, is arbitrary constant.

Now substituting Equation (16) into Equation (14), we
obtain traveling wave solution:

~4ef +20b, —ble*

n($)= s 12b, +3bZe £ 19
Equation (19) can be simplified:

4) 2—?1+ (4+b§)c0sh§+§(gio—b§) sish&+4p,’ 2
where é‘:xiﬁt.

If b, =2, Equation (20) becomes

u(x,t)z_—l+ 2 (21)

3 1+cosh(xi\/5t)'

Substituting Equation (17)
simplifying, we obtain

into Equation (14) and

4b, (22)
4+b; Jcosh & +(4—b; )sinh & +4b,

u(é:):al"'(

where &= x + /4547 +15a,+2 1.

If b, =2, Equation (22) becomes

! (23)

I+cosh v+ 45a +154,+2 1)

Again, substituting Equation (18) into Equation (14) and
simplifying, we obtain

u(x,t)=a1+

(=3 o
T3 4 cosh E+(4—F)sinh £+ 48,

(24)

where £=x+ 23 1.
If b, =2, Equation (24) becomes

u(x l‘)—£+%
3 1+cosh(x12\/§z)'

Case 2

Choose p=c=2 and g=d =1.
For this case, the trial solution Equation (5) reduces to

28 -
ae” +ae” +a,+a_e
u(g)_ 2 1 0 1

 be* +bef +h,+b e

4 4

Since, there are some free parameters in Equation (26)
for simplicity, we may consider b, =1 and b_, =0. Then
the solution Equation (26) is simplified:

%+ ale‘f +a,+ a_le_f

e +be’ +b,

u(é)="2°

(27)

Executing the same procedure as described in Case 1,
we obtain



beh @0 q=_f a=h a=. b=t 55 (28)

where b1 is a free parameter

heb, ;=0 ¢=_H. a=_h a=7, h=H, s=H2
where b, is free parameter.

o+l ey, 1 (30)

a,=a,, b=b, a,=0, q 255
b b;

s=% b%«ﬂbﬁ + 60%}712 + 720a§ s
1
where a,and b, are free parameters.

-1, 1 -2 1,
b=b, a,=0, a():zbl.v ‘ﬁnglv =" bozzblv

where b, is free parameter.

Using Equation (28) into Equation (27) and simplifying,
we obtain

-1 8b,
u (é) = ?-'_ (4 2 2\ s ’
+b])cosh&+(4—b] )sinh & +4b,
(32)
where E=x +/21.
If b, =2, Equation (32) becomes
u(x,t)=_—l+ 2 (33)

3 1+cosh(x +42 t).

Substituting Equation (29) into Equation (27) and
simplifying, we obtain

_IL 4bl

=+ : 34
=3 (4+8) cosh&+{4—17 )sinh £-+4) (%4
where E=x +/21.

If b, =2, Eq. (34) becomes
u(x,t)z_—l+ 1 (35)

3 1+cosh(x * \/Et)

Substituting Equation (30) into Equation (27) and
simplifying, we obtain
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4a, 4b,
=04 , (36)
“(¢) b (4+b] )cosh&+(4—b)sinh & +4b,

. 1 4 2 2
where & =x + b—szbl +60a,b? +720a 1.

1

If b, =2, Equation (36) becomes
u(x,t)=a,+ ! (37)

I+coshx /456 +15,+21)

Substituting Equation (31) into Equation (27) and
simplifying, we obtain

-2 4b,
=—+ , (38)
“6)=3 (4+b7)cosh&+(4—b7)sinh & +4b,
where £ =x + 2./31.
If b, =2, Equation (38) becomes
u(n) ="+ 1 (39)

3 1+cosh(x * 2\/§ t).

Case 3

Choose p=c=2 and g=d =2.
For this case, the trial solution Equation (5) reduces to
¢

4 4

a2€2§ +ae +a,+a_ e +a,e’
u(¢)= 27 z £ S (40)

b,e” +be” +b,+b e +b_ e
Since, there are some free parameters in Equation (40),
we may consider b, =1, a,=0, b,=0 and
b,=0. So that the Equation (40) reduces to the

Equation (27). This indicates that the Case 3 is
equivalent to the Case 2.
Equation (40) can be re-written as:

(&) aze‘f +a, + aoe_‘f + a_le_zf + a_ze_35 (1)
u(g)= ,

bye +b +be +b e +b e
If we put a,=0, a,=0, b,=1, b,=0 and

b_, =0 into Equation (41), we obtain the solution form as
Equation (14). This implies that the Case 3 is equivalent to
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Table 1. Comparison between Aslan and Ozis (2009) solutions and our solutions.

Aslan and Ozis (2009) solution

Our solution

-1
if A=1, u=0, aoz?, c=%F+2and (fo=0, Equation

(19) becomes u,  (x,7) :%1+%sec n’ %(xi'x/i t).

i.if A> =44 =1 and & =0 Equation (24) becomes

Uy 1 (X,1) :%l+sech2%(xi-\/§ t).

i.lf a, :?, solution Equations (23) and (37) become
-1 1 1
u(x,t)=—+=sech’=(x++/2 t).
(wr) =3 ysect s (v2321)

ii. Solution Equations (21) and (33) become

u(x,t):%l+sech2%(xi-\/§ t).

-0.3+
-100 5] -100

W
W

{3
i

1
g
oo

)

o

%
A
255

=:
¥
’0

R
&
%

oy

&
B
o

"y
W

Figure 1. lllustrated solitons of Equations (21) and (33).

to the Case 1.

Also, if we consider p=c=3 and g =d =3, itcan be
shown that this Case is also equivalent to the Cases 1
and 2.

Therefore, we think that no need to find the solutions
again. It is noted that the solution Equations (21) and (33)
are identical. And, the solution Equation (37) becomes

the solution Equation (23) if a, is replaced by a,. More-
over, the solution Equations (25) and (39) are identical.

DISCUSSION

Many authors implemented different methods to the sixth-
order Boussinesq equation for obtaining travelling wave
solutions, such as, Wazwaz (2008) used the Hirota’s

bilinear method and the tanh-coth method for
constructing multiple-soliton solutions. Hosseini et al.
(2011) implemented the exponential rational function
method for getting exact traveling wave solutions and

Aslan and Ozis (2009) applied the (G’/G)-expansion

method to construct analytical solutions. To the best of
our awareness, the sixth-order Boussinesq equation
(Aslan and Ozis, 2009) has not been investigated by the
exp-function method to construct exact travelling wave
solutions. The obtained solitary wave solutions are new
and have not been found in the previous literature.

Beyond Table 1 Aslan and Ozis (2009) obtained other
trigonometric solutions (20) and (25). But, we obtain more
new solutions (25), (35) and (39).

Graphical representations of exact solitary wave
solutions

Our obtained solutions are shown in Figures 1 to 4 with
the aid of Maple 13.

Solutions of the regularized long lave (RLW) equation

The regularized long wave equation is an important
nonlinear wave equation. It is related to a huge number of
important physical phenomena, such as, shallow water
waves, plasma waves and ion acoustic plasma waves.
The RLW equation is an alternative depiction of nonlinear
dispersive waves to the more usual Korteweg-de Vries
(KdV) equation (Soliman, 2005).

Now, let us consider the regularized long wave (RLW)
equation (Eilbeck and Guire, 1977):

u +u, +uu, —u,_ =0. (42)

Now, we seek solitary wave solutions of Equation (42).
Using Equation (2), Equation (42) transformed to an
ordinary differential equation:
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Figure 2. Single solitary wave of Equations (23) and
(37).
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Figure 3. Solitons of Equations (25) and (39).

su'tu'+uu'—su"=0. (43)

where primes denote the derivative with respect to &.

According to He and Wu (2006), the solution of Equation
(43) can be expressed in the form of Equation (5).
In order to determine the values of cand p, we

balance the highest order linear term of u” with the
highest order nonlinear term of uu' in Equation (43).
Therefore, we have

G exp[(3p+c)§]+...
c,exp[4pé]+...

]
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Figure 4. Solitons solutions of Equations (25) and (39).

and

,_ G exp[2(p+c)&]+...
c,exp[4p&]+...

(45)

Balancing the highest order of the exp-function, in
Equations (44) and (45), we obtain 3p+c=2(p+c),
which in turn gives p =c.

To determine the values of d and ¢,we balance the

lowest order linear term of u” with the lowest order
nonlinear term of uu’ in Equation (43). Therefore, we

have

ot diexp[~(d +3¢)¢] (46)
wtd,exp[-4¢¢E]

and

o _erdiep[2(d +q)€] (47)
.t+d,exp[4¢&]

Now balancing the lowest order of the exp-function, in
Equations (46) and (47), we obtain

—(d+3q)=-2(d +q), whichintumn gives g =d.

Case 1

Choose p=c=1and g=d =1.
For this case, the trial solution Equation (5) reduces to
Equation (14). Now, substituting Equation (14) into

Equation (43) and simplifying, we obtain
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1A(c3e3f +Ce* +GE+C+C e " +Ce ™ +C e ) =0, (48)

Setting each coefficient of exp(ﬂ_L nf), n=0,1,2,3,...,
we obtain a set of algebraic equations (which are not
shown here with). And, the coefficients of exp(inf),

n=0,1,2,3,... to be zero, such as:

G=0 G=0 G=0 G=0 =0 =0 C=0 (49)

Solving the system of algebraic Equation (49) with the aid
of algebraic software Maple 13, we obtain

-1 1 —(a +b)
b=b, a=aq, a_1=zb§, a=-1, b_1=1b§, §= 60b0 -,
(50)

where a, and b, are arbitrary constants.

Now, substituting Equation (50) into Equation (14) and
simplifying, we obtain

u(f)=—1+ 4(“()+b0) (51)
(4457 )cosh&+(4—b] )sinh & +4b,
where é::x_%bbot'
0

If b, =2, Equation (51) becomes

a,+2

2|:1+cosh(x—mtﬂ
12

u(x,t)=-1+

Case 2

Choose p=c=2 and g=d =1.

For this case, the trial solution Equation (5) reduces to
Equation (27).

According to the same procedure as described in case
1, we obtain

-1

a=a, b=b, a,=0, aozjb]z,

a=-1 b():%blz, S:_(al_'—bl)’ (53)

6b,

where a, and b, are arbitrary constants.

Substituting Equation (53) into Equation (27) and
simplifying, we obtain

4(a +b) (54)
(4+b)cosh & +(4=b})sinh & +4b,

u(.f):—1+

a, +b,

where & =x—
(f 6bl

If b, =2, Eq. (54) becomes

u(x,r)=-1+ @ +2 : (85)
a1+2tJ
12

2{l+cosh(x—

Case 3

Choose p=c=2 and g=d =2.
For this case, the trial solution Equation (5) reduces to
Equation (40).

For simplicity, we may consider b, =1, b, =0 and

b, =0. Then the solution Equation (40) is simplified:

_ azezf + ale‘f Ct a_ze_zf

e* +be* +h,

+a,+a e

u(g)

(56)

According to same procedure as described in case 1, we
obtain

-1, 1, —la+h
4=a, b=h, a,=0, a,=0, a="7b, &=-1 h= b, s= (6,)1 ),
(57)

where a, and b, are arbitrary constants.

Using Equation (57) into Equation (56) and simplifying,
we obtain

u(&)=-1+ Ha +b) (58)
2 2 . ’
(4+57)cosh&+(4—b7 )sinh & +4b,
where & = x_%bbl;
1

If b, =2, Equation (58) becomes

u(xnr)=—1+ a,+2 (59)

2| I+cosh x—wt
12

It is noted that the solution Equations (55) and (59)

become the solution Eq. (52), if q, is replaced by a,,.
Many researchers used different methods to find

traveling wave solutions for RLW equation, such as;

Eilbeck and Guire (1977) used the numerical method,
and El-Danaf et al. (2005) investigated the Adomian




Figure 5. Soliton solution of Equations (49), (52)
and (56).

Figure 6. Solitons of Equations (49), (52) and (56).

decomposition method. But, to the best of our knowledge,
no body studied the equation by using the exp-function
method for searching exact traveling wave solutions.
Obtained solitary wave solutions in this article are new,
which have not been found in the previous literature.

Graphical representations of solitary wave solutions

The aforementioned solutions are presented in Figures 5
to 8 with the help of Maple 13.
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Figure 8. Single soliton of Equations (49), (52) and (56).

Conclusions

In this article, we obtain new exact traveling wave
solutions including solitary solutions for the Sixth-order
Boussinesq equation and RLW equations by using the
exp-function method. The obtained solutions show that
the exp-function method is promising and powerful
mathematical tool for solving nonlinear evolution equ-
ations which arise in mathematical physics, engineering
sciences and applied mathematics. We hope that the
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method can be effectively used for further studies to
many NLEEs.
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